Biology
Related Works
Content type
Digital Document
Abstract
Mcl-1 (myeloid cell leukaemia-1) is a Bcl-2 family member with short-term pro-survival functions but whose other functions, demonstrated by embryonic lethality of knockout mice, do not involve apoptosis. In the present study, we show a cell-cycle-regulatory role of Mcl-1 involving a shortened form of the Mcl-1 polypeptide, primarily localized to the nucleus, which we call snMcl-1. snMcl-1 interacts with the cell-cycle-regulatory protein Cdk1 (cyclin-dependent kinase 1; also known as cdc2) in the nucleus, and Cdk1 bound to snMcl-1 was found to have a lower kinase activity. The interaction with Cdk1 occurs in the absence of its cyclin partners and is enhanced on treatment of cells with G2/M blocking agents, but not by G1/S blocking. The snMcl-1 polypeptide is present during S and G2 phases and is negligible in G1. Overexpression of human Mcl-1 in a murine myeloid progenitor cell line resulted in a lower rate of proliferation. Furthermore, Mcl-1-overexpressing cells had lower total Cdk1 kinase activity compared with parental cells, in both anti-Cdk1 and anti-cyclin B1 immunoprecipitates. The latter results suggest that binding to snMcl-1 alters the ability of Cdk1 to bind its conventional partner, cyclin B1. Given the important role of Cdk1 in progression through G2 and M phases, it is probable that the inhibition of Cdk1 activity accounts for the inhibitory effect of Mcl-1 on cell growth.
Origin Information
Content type
Digital Document
Abstract
Here we report a novel role for myeloid cell leukemia 1 (Mcl-1), a Bcl-2 family member, in regulating phosphorylation and activation of DNA damage checkpoint kinase, Chk1. Increased expression of nuclear Mcl-1 and/or a previously reported short nuclear form of Mcl-1, snMcl-1, was observed in response to treatment with low concentrations of etoposide or low doses of UV irradiation. We showed that after etoposide treatment, Mcl-1 could coimmunoprecipitate with the regulatory kinase, Chk1. Chk1 is a known regulator of DNA damage response, and its phosphorylation is associated with activation of the kinase. Transient transfection with Mcl-1 resulted in an increase in the expression of phospho-Ser345 Chk1, in the absence of any evidence of DNA damage, and accumulation of cells in G2. Importantly, knockdown of Mcl-1 expression abolished Chk1 phosphorylation in response to DNA damage. Mcl-1 could induce Chk1 phosphorylation in ATM-negative (ataxia telangectasia mutated) cells, but this response was lost in ATR (AT mutated and Rad3 related)-defective cells. Low levels of UV treatment also caused transient increases in Mcl-1 levels and an ATR-dependent phosphorylation of Chk1. Together, our results strongly support an essential regulatory role for Mcl-1, perhaps acting as an adaptor protein, in controlling the ATR-mediated regulation of Chk1 phosphorylation.
Origin Information
Content type
Digital Document
Abstract
Gonadal steroids are potent regulators of adult neurogenesis. We previously reported that androgens, such as testosterone (T) and dihydrotestosterone (DHT), but not estradiol, increased the survival of new neurons in the dentate gyrus of the male rat. These results suggest androgens regulate hippocampal neurogenesis via the androgen receptor (AR). To test this supposition, we examined the role of ARs in hippocampal neurogenesis using 2 different approaches. In experiment 1, we examined neurogenesis in male rats insensitive to androgens due to a naturally occurring mutation in the gene encoding the AR (termed testicular feminization mutation) compared with wild-type males. In experiment 2, we injected the AR antagonist, flutamide, into castrated male rats and compared neurogenesis levels in the dentate gyrus of DHT and oil-treated controls. In experiment 1, chronic T increased hippocampal neurogenesis in wild-type males but not in androgen-insensitive testicular feminization mutation males. In experiment 2, DHT increased hippocampal neurogenesis via cell survival, an effect that was blocked by concurrent treatment with flutamide. DHT, however, did not affect cell proliferation. Interestingly, cells expressing doublecortin, a marker of immature neurons, did not colabel with ARs in the dentate gyrus, but ARs were robustly expressed in other regions of the hippocampus. Together these studies provide complementary evidence that androgens regulate adult neurogenesis in the hippocampus via the AR but at a site other than the dentate gyrus. Understanding where in the brain androgens act to increase the survival of new neurons in the adult brain may have implications for neurodegenerative disorders. Part of the "Neuroendocrinology" issue.
Origin Information
Content type
Digital Document
Abstract
Small-subunit ribosomal DNA (SSU) sequences for 14 members of the rhodophyte order Acrochaetiales were used to generate phylogenetic trees to determine whether the Acrochaetiales is monophyletic and to assess the relationships of acrochaetioid algae to closely related taxa. Within the Acrochaetiales, two strongly supported groups are recognized: one group that includes, in addition to three other species, the type species of the genera Acrochaetium, Audouinella and Rhodochorton; and a second group that includes an unequivocal representative of Colaconema and nine additional species. The relationships of these groups with the Batrachospermales, Palmariales and Nemaliales were not resolved and the possibility that the Acrochaetiales is polyphyletic was not eliminated. Resolution of relationships for species within these groups was strong in only a few cases, with many of the phylogenetic issues at this level remaining equivocal. Our results do not position Camontagnea in the Acrochaetiales, as has recently been suggested, but strongly ally this genus to the family Rhodothamniellaceae of the Palmariales. The phylogenetic position of Rhododraparnaldia, an alga intermediate between the Acrochaetiales and Batrachospermales, remains unresolved. These molecular results provide a foundation for assessing the taxonomic significance of phenotypic characters (e.g. anatomy, life histories, morphology, phycoerythrin type and plastid details) variously considered taxonomically significant in the Acrochaetiales.
Origin Information
Content type
Digital Document
Abstract
Systematics of the red algal order Acrochaetiales and related taxa was investigated using combined small- and large-subunit nuclear ribosomal DNA (SSU and LSU rDNA, respectively) sequence data. These data were subjected to distance, parsimony and maximum likelihood analyses. The resulting phylogenies were congruent with previously published SSU results in that all included orders (Balbianiales, Batrachospermales, Nemaliales, Palmariales and Thoreales) were resolved as monophyletic except the Acrochaetiales, which consisted of two lineages (Acrochaetiales I and II). The Batrachospermales and Thoreales occupied equivocal positions as early diverging lineages, while the Balbianiales generally resolved as sister to an Acrochaetiales–Nemaliales–Palmariales (ANP) complex. Relationships among the four lineages of the ANP complex were not completely resolved, but detailed analyses weakly positioned Acrochaetiales II as sister to the Nemaliales, whereas Acrochaetiales I displayed a moderate to strong affiliation with the Palmariales. Acrochaetiales I included representatives of the genera Acrochaetium, Audouinellaand Rhodochorton, whereas Acrochaetiales II had a number of acrochaetioid species including a representative of the genus Colaconema. Compared with published SSU phylogenies, bootstrap values within the two Acrochaetiales lineages increased substantially in combined SSU/LSU analyses. Based on these results, emended generic descriptions are provided for Acrochaetium, Audouinella, Colaconemaand Rhodochorton, and a new family of acrochaetioid algae is described, the Colaconemataceae J. T. Harper etG. W. Saunders. The Acrochaetiaceae now includes the genera Acrochaetium, Audouinellaand Rhodochorton, while the Colaconemataceae is considered monogeneric at this time. It is quite likely that additional genera will be recognized within the Colaconemataceae pending further investigation. Acrochaetiaceae is retained as the sole family of the Acrochaetiales, although the tenuous recognition of the Palmariales as distinct from this order is discussed, whereas Colaconemataceae is transferred to the new order Colaconematales J. T. Harper et G. W. Saunders.
Origin Information
Content type
Digital Document
Abstract
Background: Lateral gene transfer is increasingly invoked to explain phylogenetic results that conflict with our understanding of organismal relationships. In eukaryotes, the most common observation interpreted in this way is the appearance of a bacterial gene (one that is not clearly derived from the mitochondrion or plastid) in a eukaryotic nuclear genome. Ideally such an observation would involve a single eukaryote or a small group of related eukaryotes encoding a gene from a specific bacterial lineage.
<p>Results: Here we show that several apparently simple cases of lateral transfer are actually more complex than they originally appeared: in these instances we find that two or more distantly related eukaryotic groups share the same bacterial gene, resulting in a punctate distribution. Specifically, we describe phylogenies of three core carbon metabolic enzymes: transketolase, glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate-3-epimerase. Phylogenetic trees of each of these enzymes includes a strongly-supported clade consisting of several eukaryotes that are distantly related at the organismal level, but whose enzymes are apparently all derived from the same lateral transfer. With less sampling any one of these examples would appear to be a simple case of bacterium-to-eukaryote lateral transfer; taken together, their evolutionary histories cannot be so simple. The distributions of these genes may represent ancient paralogy events or genes that have been transferred from bacteria to an ancient ancestor of the eukaryotes that retain them. They may alternatively have been transferred laterally from a bacterium to a single eukaryotic lineage and subsequently transferred between distantly related eukaryotes.
<p>Conclusion: Determining how complex the distribution of a transferred gene is depends on the sampling available. These results show that seemingly simple cases may be revealed to be more complex with greater sampling, suggesting many bacterial genes found in eukaryotic genomes may have a punctate distribution.
Origin Information
Content type
Digital Document
Abstract
This paper is a review, based largely though not exclusively on work from the authors' research group, of the role of Ca2+ channels in the actions of ethanol. The position is taken that an important consequence of the presence of ethanol in the region of excitable cells is a reduction in voltage-activation of membrane ion channels with a resulting decrease in cellular excitability. We suggest that excitable cells adapt to this effect by increasing the number of Ca2+ channels on the cell membrane. The channels are of a subtype which are inhibited by the dihydropyridine Ca2+ “antagonist” drugs. Although the mechanism of Ca2+ channel up-regulation is an effective short-term measure as adaptation against the acute effects of ethanol, we consider it may have detrimental longer term consequences including physical dependence and alcohol-related pathology including the death of excitable cells.
Origin Information
Content type
Digital Document
Abstract
The effects of different local food resources on the diets of some filipalpian stonefly nymphs (Aphanicerca spp.) were investigated. Animals from two headwater reaches, one primarily allochthonously driven and the other an open-canopied autochthonous-based system were compared. However, gut and stable carbon isotope analyses revealed no real differences in plecopteran diets between the systems, with leaf detritus being a major source of carbon, and algae contributing virtually nothing to their diets. δ15N analysis suggested that the animals obtained their nitrogen from sources other than leaf material itself, and it was hypothesized that this source was the microbial slime layer formed on decomposing leaves. It was concluded that the feeding behaviour of Plecoptera is consistent with that of shredders of leaf detritus, and as such they uphold River Continuum Concept predictions of large shredder populations being indicative of a predominance of coarse particles in headwater reaches. This study also highlighted the danger of making broad generalisations as to an organism's diet, based on the overall nature of the system, rather than on the micro- level of what may actually be available to small populations within a species.
Origin Information
Content type
Digital Document
Abstract
The relationships between the standing stocks of deposit-feeding benthic invertebrates and benthic chlorophyll-a, phaeopigment and total combustible organic matter were investigated at a series of coastal lagoons and in the type of intertidal soft-sediment sites from which the lagoons originated. Across all the sites, in Norfolk, UK, an inverse relationship occurred between (a) the amounts of chlorophyll-a and of other potential food materials and (b) the degree of coverage by water. The biomass of consumers also decreased with increased water coverage, so that the lagoons supported less biomass than the adjacent high-level intertidal sites. Further, the deposit-feeder biomass supported by unit food decreased with extent of water coverage.There was no evidence of any relationship between deposit-feeder and food biomass within any single site, in spite of the study period being selected to be that in which there was maximum likelihood of competition for microphytobenthic food. Whilst chlorophyll concentrations may set the maximum achievable level of consumer biomass at these sites, including in the deeper lagoons setting very low potential maximum population densities, the seasonal abundance patterns of the deposit feeders appear to be determined by other factor(s). [ABSTRACT FROM PUBLISHER]
Origin Information
Content type
Digital Document
Abstract
ALS2 is an autosomal recessive form of spastic paraparesis (motor neuron disease) with juvenile onset and slow progression caused by loss of function of alsin, an activator of Rac1 and Rab5 small GTPases. To establish an animal model of ALS2 and derive insights into the pathogenesis of this illness, we have generated alsin-null mice. Cytosol from brains of Als2 mice shows marked diminu- tion of Rab5-dependent endosome fusion activity. Furthermore, primary neurons from Als2 mice show a disturbance in endo- somal transport of insulin-like growth factor 1 (IGF1) and BDNF receptors, whereas neuronal viability and endocytosis of trans- ferrin and dextran seem unaltered. There is a significant decrease in the size of cortical motor neurons, and Als2 mice are mildly hypoactive. Altered trophic receptor trafficking in neurons of Als2 mice may underlie the histopathological and behavioral changes observed and the pathogenesis of ALS2.
Origin Information