Default image for the object The interval between Ins2 and Ascl2 is dispensable for imprinting centre function in the murine Beckwith–Wiedemann region, object is lacking a thumbnail image
Imprinted genes are commonly clustered in domains across the mammalian genome, suggesting a degree of coregulation via long-range coordination of their monoallelic transcription. The distal end of mouse chromosome 7 contains two clusters of imprinted genes within a ~1 Mb domain. This region is conserved on human 11q15.5 where it is implicated in the Beckwith-Wiedemann syndrome. In both species, imprinted regulation requires two critical cis-acting imprinting centres, carrying different germline epigenetic marks and mediating imprinted expression in the proximal and distal sub-domains. The clusters are separated by a region containing the gene for tyrosine hydroxylase (Th) as well as a high density of short repeats and retrotransposons in the mouse. We have used the Cre-loxP recombination system in vivo to engineer an interstitial deletion of this ~280-kb intervening region previously proposed to participate in the imprinting mechanism or to act as a boundary between the two sub-domains. The deletion allele, Del7AI, is silent with respect to epigenetic marking at the two flanking imprinting centres. Reciprocal inheritance of Del7AI demonstrates that the deleted region, which represents more than a quarter of the previously defined imprinted domain, is associated with intrauterine growth restriction in maternal heterozygotes. In homozygotes, the deficiency behaves as a Th null allele and can be rescued pharmacologically by bypassing the metabolic requirement for TH in utero. Our results show that the deleted interval is not required for normal imprinting on distal Chr 7 and uncover a new imprinted growth phenotype.
The basic helix-loop-helix (bHLH) transcription factor ASCL2 plays essential roles in diploid multipotent trophoblast progenitors, intestinal stem cells, follicular T-helper cells, as well as during epidermal development and myogenesis. During early development, Ascl2 expression is regulated by genomic imprinting and only the maternally inherited allele is transcriptionally active in trophoblast. The paternal allele-specific silencing of Ascl2 requires expression of the long non-coding RNA Kcnq1ot1 in cis and the deposition of repressive histone marks. Here we show that Del7AI, a 280-kb deletion allele neighboring Ascl2, interferes with this process in cis and leads to a partial loss of silencing at Ascl2. Genetic rescue experiments show that the low level of Ascl2 expression from the paternal Del7AI allele can rescue the embryonic lethality associated with maternally inherited Ascl2 mutations, in a level-dependent manner. Despite their ability to support development to term, the rescued placentae have a pronounced phenotype characterized by severe hypoplasia of the junctional zone, expansion of the parietal trophoblast giant cell layer, and complete absence of invasive glycogen trophoblast cells. Transcriptome analysis of ectoplacental cones at E7.5 and differentiation assays of Ascl2 mutant trophoblast stem cells show that ASCL2 is required for the emergence or early maintenance of glycogen trophoblast cells during development. Our work identifies a new cis-acting mutation interfering with Kcnq1ot1 silencing function and establishes a novel critical developmental role for the transcription factor ASCL2. [ABSTRACT FROM AUTHOR]