Default image for the object Conjugated polymers: evaluating DFT methods for more accurate orbital energy modeling, object is lacking a thumbnail image
Density functional theory (DFT) calculations are useful to model orbital energies of conjugated polymers, yet discrepancy between theory and experiment exist. Here we evaluate a series of relatively straightforward calculation methods using the standard Gaussian 09 software package. Five calculations were performed on 22 different conjugated polymer model compounds at the B3LYP and CAM-B3LYP levels of theory and results compared with experiment. Chain length saturation occurs at approximately 6 and 4 repeat units for homo- and donor–acceptor type conjugated polymers, respectively. The frontier orbital energies are better approximated using B3LYP than CAM-B3LYP, and the HOMO energy can be reasonably correlated with experiment [mean signed error (MSE) = 0.22 eV]. The LUMO energies, however are poorly correlated (MSE = 0.59 eV), and we show that the molecular orbital energy of the triplet state gives a much better estimate of the experimentally determined LUMO level (MSE = −0.13 eV).