Components of search effort were determined for adult females of Orius tristicolor (White) (Hemiptera: Anthocoridae) on bean, Phaseolus vulgaris L., leaves with either western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) or twospotted spider mites, Tetranychus urticae (Koch) (Acari: Tetranychidae) as prey. In the absence of prey, females of O. tristicolor allocated significantly more search time to leaves damaged by western flower thrips than to leaves damaged by twospotted spider mites, artificially damaged leaves or undamaged leaves. In the presence of prey, search time increased with increasing amounts of leaf damage for both prey species, but was not affected by prey species. Amounts of leaf damage or type of prey did not affect giving‐up‐time. The proportion of predators that successfully located thrips increased with increasing amounts of thrips damage on leaves. Females of O. tristicolor appeared to follow some simple, behavioural rules‐of‐thumb for allocation of search effort. The presence and type of damage determined the initial effort allocated to searching a leaf. Subsequent effort was determined by successful capture of prey, regardless of species. The implications of these results for application of Orius spp. for biological control are discussed. [ABSTRACT FROM AUTHOR]
Origin Information
Default image for the object The cost of being an omnivore: Mandible wear from plant feeding in a true bug, object is lacking a thumbnail image
Evolutionary and ecological transitions from carnivorous to omnivorous feeding may be constrained by the ability of the animal to cope with disparate types of foods, even if preadaptations for such behaviour exist. The omnivorous true bug, Dicyphus hesperus (Hemiptera: Miridae) requires both animals (small, soft-bodied insects) and plants in its diet and obtains the majority of its dietary and metabolic water from plant feeding. Serrations on the lateral margins of the mandibular stylets wear with age, and this wear is exacerbated when the insects feed on plants compared to those provided free water and no plants. D. hesperus that feed on plants attack fewer prey but consumed similar amounts of prey tissue compared to individuals that were provided free water. Although others have shown mandible wear for plant-chewing animals we show for the first time that plant feeding can impose similar wear on plant-piercing animals as well.
True omnivores that feed on both plant and animal tissues are not additive combinations of herbivore and predator (carnivore). Because true omnivores must distribute adaptive feeding decisions among two disparate tissue types, understanding the context that plants provide for foraging is important to understand their role in food webs. We varied prey and plant resources to investigate the plant context in an omnivorous true bug, Dicyphus hesperus. The contribution of plant species to fitness was unimportant in water acquisition decisions, but affected numbers of prey consumed over longer periods. In plant communities, in the absence of prey, D. hesperus moved to plants with the highest resource quality. Unlike pure predators facing declining prey, omnivores can use a nondepleting resource to fund future foraging without paying a significant cost. However, the dual resource exploitation can also impose significant constraints when both types of resources are essential. The presence of relatively profitable plants that are spatially separate from intermediate consumer populations could provide a mechanism to promote stability within food webs with plant-feeding omnivores. The effects of context in omnivores will require adding second-order terms to the Lotka-Volterra structure to explicitly account for the kinds of interactions we have observed here.