Brandenburg, Jason P.
Person Preferred Name
Jason P. Brandenburg
Related Works
Content type
Digital Document
Abstract
Background
Outdoor exercisers are frequently exposed to diesel exhaust (DE) that contains particulate matter (PM) air pollution. How the respiratory and metabolic responses to exercise are affected by DE exposure and how these responses change with exercise intensity are unknown.
Purpose
This study aimed to determine the respiratory and metabolic responses to low- and high-intensity cycling with DE exposure containing high levels of PM.
Methods
Eighteen males age 24.5 ± 6.2 yr performed 30-min trials of low-intensity (30% of power at V˙O2peak) and high-intensity (60% of power at V˙O2peak) cycling as well as rest. Each trial was performed once while breathing filtered air (FA) and once while breathing DE (300 μg·m−3 of PM2.5) for a total of six trials, each separated by 7 d. During the trials, minute ventilation (V˙E), oxygen consumption (V˙O2), CO2 production (V˙CO2), RER, and perceived exertion for lungs (RPELungs) and legs (RPELegs) were measured. Work of breathing, respiratory muscle V˙O2, ratio of O2 consumption to power output, and gross efficiency were estimated.
Results
The RER was significantly lower (0.02 lower, P = 0.008), and the RPELungs (0.9 greater, P = 0.001) and the RPELegs (0.6 greater, P = 0.017) were significantly greater, in DE compared with FA. During low-intensity exercise, V˙E (44.5 ± 8.9 vs 40.5 ± 8.0 L·min−1, P < 0.001), V˙O2 (27.9 ± 5.4 vs 24.9 ± 4.4 mL·kg−1·min−1, P = 0.001), and V˙CO2 (25.9 ± 5.3 vs 23.5 ± 4.5 mL·kg−1·min−1, P = 0.006) were significantly greater in DE. This pattern was not seen during high-intensity cycling.
Conclusions
Respiratory and metabolic responses to low-intensity, but not high-intensity, cycling in DE exceed FA. Practically, the greater responses during low-intensity exercise in DE could have implications for individuals with cardiopulmonary disease. Also, the elevated RPE during DE could impair performance in self-paced exercise.
Origin Information
Content type
Digital Document
Abstract
Blueberries are abundant with anthocyanins possessing antioxidant and anti-inflammatory properties. As these properties combat fatigue and promote recovery, blueberry supplementation may enhance performance and recovery. Thus, the objectives were to examine the effects of two blueberry supplementation protocols on running performance, physiological responses, and shortterm recovery. Using a randomized, double-blind, placebo (PLA)-controlled crossover design, 14 runners completed an 8-km time trial (TT) after supplementation with 4 days of blueberries (4DAY), 4 days of a PLA, or 2 days of placebo followed by 2 days of blueberries (2DAY). Heart rate and ratings of perceived exertion were monitored during the TT. Blood lactate, vertical jump, reactive strength index, and salivary markers were assessed before and after. No significant differences were observed for time to complete the TT (PLA: 3,010 ± 459 s; 2DAY: 3,014 ± 488 s; 4DAY: 3,011 ± 423 s), heart rate, ratings of perceived exertion, or any of the salivary markers. An interaction effect (p = .027) was observed for blood lactate, with lower post-TT concentrations in 4DAY (5.4 ± 2.0 mmol/L) than PLA (6.6 ± 2.5 mmol/L; p = .038) and 2DAY (7.4 ± 3.4 mmol/L; p = .034). Post-TT decreases in vertical jump height were not different, whereas the decline in reactive strength index was less following 4DAY (-6.1% ± 13.5%) than the other conditions (PLA: -12.6% ± 10.1%; 2DAY: -11.6% ± 11.5%; p = .038). Two days of supplementation did not influence performance or physiological stress. Although 4 days of supplementation did not alter performance, it blunted the increase in blood lactate, perhaps reflecting altered lactate production and/or clearance, and offset the decrease in dynamic muscle function post-TT, as indicated by the reactive strength index differences. [ABSTRACT FROM AUTHOR]
Origin Information