Default image for the object Conjugated polymers: evaluating DFT methods for more accurate orbital energy modeling, object is lacking a thumbnail image
Density functional theory (DFT) calculations are useful to model orbital energies of conjugated polymers, yet discrepancy between theory and experiment exist. Here we evaluate a series of relatively straightforward calculation methods using the standard Gaussian 09 software package. Five calculations were performed on 22 different conjugated polymer model compounds at the B3LYP and CAM-B3LYP levels of theory and results compared with experiment. Chain length saturation occurs at approximately 6 and 4 repeat units for homo- and donor–acceptor type conjugated polymers, respectively. The frontier orbital energies are better approximated using B3LYP than CAM-B3LYP, and the HOMO energy can be reasonably correlated with experiment [mean signed error (MSE) = 0.22 eV]. The LUMO energies, however are poorly correlated (MSE = 0.59 eV), and we show that the molecular orbital energy of the triplet state gives a much better estimate of the experimentally determined LUMO level (MSE = −0.13 eV).
Origin Information
Default image for the object Designing and refining Ni (II) diimine catalysts toward the controlled synthesis of electron-deficient conjugated polymers, object is lacking a thumbnail image
Electron-deficient π-conjugated polymers are important for organic electronics, yet the ability to polymerize electron-deficient monomers in a controlled manner is challenging. Here we show that Ni(II)diimine catalysts are well suited for the controlled polymerization of electron-deficient heterocycles. The relative stability of the calculated catalyst–monomer (or catalyst-chain end) complex directly influences the polymerization. When the complex is predicted to be most stable (139.2 kJ/mol), these catalysts display rapid reaction kinetics, leading to relatively low polydispersities (∼1.5), chain lengths that are controlled by monomer:catalyst ratio, controlled monomer consumption up to 60% conversion, linear chain length growth up to 40% conversion, and ‘living’ chain ends that can be readily extended by adding more monomer. These are desirable features that highlight the importance of catalyst design for the synthesis of new conjugated polymers.
Controlling the phase-separation behavior and achieving an ideal morphology has turned into one of the most important challenges in the field of polymer electronics. In this study we report a straightforward route to ‘blocky’ copolymers that incorporates selenophene into a benzodithiophene (BDT)–thienothiophene (TT) donor–acceptor system for improved molecular ordering. The blocky structure preserves the optical properties of the parent polymers, which is different than an analogue employing purely statistical sequence. Peak force quantitative nanomechanical mode atomic force microscopy reveals a more ordered network-like morphology in blocky polymer:PC71BM films. However the photovoltaic properties of blocky polymers are still lower than the physical mixtures of the two parent polymers. This blocky copolymer approach can be applied to many other polymerization methods to prepare many new types of blocky D–A polymers. As such, it could be a new tool for tuning the polymer crystallinity, and eventually achieving controllable solid-state morphology for polymer electronic applications.