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Abstract
Background: Lateral gene transfer is increasingly invoked to explain phylogenetic results that
conflict with our understanding of organismal relationships. In eukaryotes, the most common
observation interpreted in this way is the appearance of a bacterial gene (one that is not clearly
derived from the mitochondrion or plastid) in a eukaryotic nuclear genome. Ideally such an
observation would involve a single eukaryote or a small group of related eukaryotes encoding a
gene from a specific bacterial lineage.

Results: Here we show that several apparently simple cases of lateral transfer are actually more
complex than they originally appeared: in these instances we find that two or more distantly related
eukaryotic groups share the same bacterial gene, resulting in a punctate distribution. Specifically,
we describe phylogenies of three core carbon metabolic enzymes: transketolase, glyceraldehyde-
3-phosphate dehydrogenase and ribulose-5-phosphate-3-epimerase. Phylogenetic trees of each of
these enzymes includes a strongly-supported clade consisting of several eukaryotes that are
distantly related at the organismal level, but whose enzymes are apparently all derived from the
same lateral transfer. With less sampling any one of these examples would appear to be a simple
case of bacterium-to-eukaryote lateral transfer; taken together, their evolutionary histories cannot
be so simple. The distributions of these genes may represent ancient paralogy events or genes that
have been transferred from bacteria to an ancient ancestor of the eukaryotes that retain them.
They may alternatively have been transferred laterally from a bacterium to a single eukaryotic
lineage and subsequently transferred between distantly related eukaryotes.

Conclusion: Determining how complex the distribution of a transferred gene is depends on the
sampling available. These results show that seemingly simple cases may be revealed to be more
complex with greater sampling, suggesting many bacterial genes found in eukaryotic genomes may
have a punctate distribution.
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Background
Lateral gene transfer is the movement of genes between
distantly related organisms, a phenomenon that has
become a major focus in the study of genome evolution
[1-7]. The importance of gene transfers between prokary-
otic genomes is now generally recognized due to the many
such genomes now available for comparison, although
there is still controversy about how common prokaryote-
to-prokaryote gene transfer is, and what long term effects
it has [8-10]. For eukaryotes there are far fewer sequenced
genomes to compare, and emerging evidence suggests that
lateral gene transfer may not be prevalent in many of the
lineages where the most data are available, such as verte-
brates [11,12]. Nevertheless, convincing examples of
prokaryote-to-eukaryote gene transfers have been
described [13-17], and transfers between eukaryotes are
also known [15,18-21]. While these studies make it clear
that lateral transfer has affected eukaryotic nuclear
genomes, the frequency of such events and the extent of
their evolutionary impact, particularly for eukaryote-to-
eukaryote lateral transfers remains unknown. In particu-
lar, most known cases involve genes moving from a
prokaryote to eukaryotes, whereas comparatively little is
known about transfers between eukaryotes.

Various approaches have been used to infer gene transfers
between prokaryotic genomes [22]. By far the most com-
mon method of detecting events involving eukaryotes is
to observe incongruence between phylogenetic trees
based on a gene and the tree that is considered (on the
basis of other evidence) to reflect the evolution of the
organism in which the gene is encoded. Lateral gene trans-
fer events are thus commonly invoked to explain trees that
depart from an expected topology. Nevertheless, other
explanations can account for these incongruent topolo-
gies, including reconstructions that do not accurately
reflect the history of the gene due to problems such as the
failure to account for rate-across-site variation, or covari-
ance and biased amino acid composition across the tree
[23]. Similarly, the history of the gene may be complex in
ways that erroneously suggest lateral transfer even when
the phylogeny is accurately reconstructed. For example,
gene duplication events and differential extinction of the
resulting paralogues across different lineages can lead to a
tree that appears to reflect lateral transfer but that really
describes the history of a duplicated gene.

Another emerging problem for the interpretation of lat-
eral gene transfer is the observation of genes demonstrat-
ing punctate distributions. For eukaryotes, the term
'punctate distribution' has been used to refer to cases
where two or more distantly related eukaryotic lineages
possess closely related genes that are either not found in
other eukaryotes, or are clearly different from other
eukaryotic homologues [24]. This situation is in contrast

to 'patchy distribution', a term that has been used to refer
to genes with a limited distribution in both eukaryotes
and prokaryotes [25]. Genes with a punctate distribution
are significant because they have been interpreted in sev-
eral different ways, each interpretation having its own
important implications. On one hand, such distributions
have been supposed to represent a single transfer to the
common ancestor of two or more disparate lineages. The
reconstruction of several large-scale relationships among
eukaryotes (the so-called supergroups) has been partially
based on the documentation of shared, rare characteristics
such as gene fusions or indels in two or more lineages [26-
28]. Shared lateral gene transfers have also been regarded
in this way. Recent examples include the shared posses-
sion of a nanoarchaeal prolyl-tRNA synthetase in tri-
chomonad and diplomonad flagellates [29] and a
haloarchaeal tyrosyl-tRNA synthetase in opisthokonts
[30]. In contrast, more complex distributions have been
interpreted to represent multiple transfers or eukaryote-
to-eukaryote transfers. These cases are also significant
because detecting transfers between eukaryotes is made
difficult by poor sampling of many lineages and poor res-
olution of many phylogenies, both of which impede the
distinction between horizontal and vertical descent. For
this reason, some eukaryote-to-eukaryote transfers have
been argued based on the fact that the gene bears some
special feature, such as an insertion, an accelerated rate of
substitution, or even an origin from another lateral trans-
fer event [18,24,29].

For any of these genes the possibility of ancient paralogy
followed by selective loss or retention in diverse eukaryo-
tes must also be considered. Even in such cases however,
the origin of the gene may still ultimately be due to a lat-
eral transfer event, whereas its distribution is due to other
factors. Deciding between these interpretations involves
balancing a variety of observations, including how wide-
spread the gene in question is, how closely related the
organisms that possess the gene are believed to be,
whether other close relatives possess or lack the gene, and
how convincingly a source lineage for the gene can be
identified. In many cases we cannot answer these ques-
tions because data are lacking from a sufficient diversity of
eukaryotes, such that it is impossible to conclude what
might be the underlying cause. Moreover, it is impossible
to say whether the factors resulting in punctate clades are
common or rare: in many cases bacterium-to-eukaryote
transfers have been inferred from data with seemingly
simple distributions, but it is possible that some of these
distributions only appear simple because of sampling
deficiency.

Here we use EST data to evaluate what are apparently sim-
ple cases of lateral transfer of genes involved in core car-
bon metabolism. Surprisingly, we find in each instance a



BMC Evolutionary Biology 2007, 7:89 http://www.biomedcentral.com/1471-2148/7/89

Page 3 of 13
(page number not for citation purposes)

more complex, punctate distribution than suggested by
the initial observations. In this study, we characterize pro-
tist homologues of three genes: ribulose-5-phosphate-3-
epimerase (RPE), glyceraldehyde-3-phosphate dehydro-
genase (GAPDH), and transketolase (TK). In the case of
RPE, a transfer event has been described between a γ-pro-
teobacterium related to Pseudomonas and a chlorarachnio-
phyte [15]. Similarly, many lateral transfer events
involving eukaryotic GAPDH have been described
[15,21,31-34], including one isolated clade of diplone-
mid genes inferred to be have been transferred from a pro-
teobacterium [33]. In the case of transketolase (TK), the
chlorarachniophyte TK is not closely related to other
eukaryotic homologues, but is very similar to homologues
from Chlamydiales. For each of these genes, a single trans-
fer from a bacterium to a eukaryote is evident from the
relationship between the eukaryotic and a particular sub-
group of bacteria, but we show here that the distribution
within eukaryotes suggests a more complicated history. In
all three cases we find homologues in other eukaryotes
that are only distantly related to the organism in which
the gene was first found. How the complex distribution of
these genes arose is uncertain, but these examples indicate
that such a punctate pattern of presence is more common
than previously thought, leading us to suggest that other
apparently simple cases of lateral transfer may be more
complex than they appear.

Results & Discussion
Ribulose-5-Phosphate-3-Epimerase
Ribulose-5-phosphate epimerase (RPE) catalyzes the bidi-
rectional conversion of ribulose-5-phosphate to xylulose-
5-phosphate both in the Calvin cycle in the plastid of pho-
tosynthetic eukaryotes and in the cytosolic pentose-phos-
phate pathway of both photosynthetic and non-
photosynthetic eukaryotes. Phototrophic eukaryotes
therefore have two forms of this enzyme: the plastid-tar-
geted form in red algae, green algae and plants is cyano-
bacterial, whereas the cytosolic form is related to that of
non-photosynthetic eukaryotes, as expected (Figure 1).
The relationships among cytosolic epimerases of eukaryo-
tes are poorly resolved, with only recently diverging
groups such as vascular plants and metazoa recovered
with strong bootstrap support.

Previously, it has been shown that the plastid-targeted
RPE of the chlorarachniophyte B. natans is not related to
other plastid-targeted or even cyanobacterial genes, as one
would expect, but is instead closely related to the γ-pro-
teobacterial genus Pseudomonas [15]. By increasing the
sampling of RPE from EST and genomic data of other pro-
tists, a similar proteobacterial RPE sequence was found in
six different chromalveolate genomes. Phylogenetic anal-
ysis confirmed that RPE genes from the haptophytes Emil-
iania huxleyi, Prymnesium parvum and Pavlova lutheri are all

of the γ-proteobacterial type, as are those from the dia-
toms Thalassiosira pseudonana and Phaeodactylum tricornu-
tum (Figure 1). A fragment of a highly similar gene was
also identified in the haptophyte Isochrysis galbana (Gen-
Bank accession EC139053). It was too short to be
included in the analysis, but preliminary trees confirmed
it was closely related to the other haptophyte RPE genes
(not shown). Relationships between the chromalveolate
and B. natans genes (here designated RPE-γ) are unre-
solved, but collectively they form a strongly-supported
group with γ-proteobacterial homologues, and more spe-
cifically the relationship with pseudomonads and
alteromonads remains well supported. The RPE-γ from B.
natans was reported to have a truncated N-terminal leader,
suggesting it is plastid-targeted [15]. Evidence for this
clade consisting of plastid-targeted proteins also comes
from P. tricornutum and E. huxleyi RPE-γ sequences, that
have full-length leaders predicted to encode signal pep-
tides at the N-terminus, which is a characteristic of plastid-
targeted proteins in these organisms. The P. parvum, P.
lutheri and T. pseudonana RPE-γ sequences also all have
truncated N-terminal leaders, further suggesting that this
entire clade of proteobacterium-derived RPE proteins is
plastid-targeted. Unlike the RPE of B. natans which has
been demonstrated to be a bacterial gene in a eukaryotic
genome by the presence spliceosomal introns, and the
diatoms RPEs which have been assembled in to a eukary-
otic genome, the possibility of bacterial contamination in
the P. parvum, P. lutheri and E. huxleyi ESTs cannot be for-
mally ruled out, but is very unlikely for several reasons
relating to how the sequences were generated (see Meth-
ods for details).

The two diatom genomes encode another RPE that
branches with the cytosolic homologues of other eukary-
otes, but there is no evidence in any of the five chromal-
veolates for a cyanobacterium-derived, red algal-type RPE
gene that would be expected to operate in the plastids of
these organisms. This search included the complete
genome sequence of T. pseudonana and the nearly com-
plete sequence of the P. tricornutum genome, as well as the
extensive EST databases that have been generated for the
three haptophytes. It would appear that the ancestral,
cyanobacterium-derived RPE is absent from all of these
chromalveolates. A second, bacterial-type RPE was found
in I. galbana (GenBank accession EC141129), but it was
not found to be related to plastid or other eukaryotic
homologues.

The origin of the γ-proteobacteria-like RPE gene in eukary-
otes and its distribution must be considered separately.
The origin of the RPE-γ gene is addressed by the strong
support for the eukaryotic genes being sister to a specific
and taxonomically narrow group of bacteria, the pseu-
domonads. This result argues for a relatively recent origin

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EC139053
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EC141129
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Bayesian phylogenetic tree of ribulose-5-phosphate-3 epimerase (RPE)Figure 1
Bayesian phylogenetic tree of ribulose-5-phosphate-3 epimerase (RPE). The tree was inferred from 183 amino acid 
characters with branch lengths estimated using PROML. Bootstrap values > 50% are shown. Values shown above a node corre-
spond to PHYML bootstrap support, those below a node correspond to WEIGHBOR support. Eukaryotic sequences are 
enclosed in boxes where blue corresponds to the major clade of cytosolic proteins, green corresponds to plastid-targeted pro-
teins, and red corresponds to bacterium-derived genes. Filled circles adjacent to taxon names indicate that a complete genome 
is available from this organism.
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by lateral gene transfer from the pseudomonads to
eukaryotes. The distribution of this gene, however, is
more complicated because the eukaryotes that contain
RPE-γ are not all closely related. Evidence exists that hap-
tophytes and diatoms are both members of the super-
group Chromalveolata, but chlorarachniophytes belong
to a completely different supergroup, Rhizaria [35].
Explaining this complex distribution by paralogy would
be relatively simple if the enzyme were cytosolic: one
would then propose that rhizaria and chromalveolates
were specifically related and that many of the constituent
lineages of these two supergroups had lost the enzyme
(considering only complete or nearly complete genomes,
this would include apicomplexa, Perkinsus and ciliates).
However, the fact that RPE-γ is targeted to the plastid sub-
stantially complicates this interpretation because the B.
natans plastid is derived from a green alga whereas the
chromalveolate plastids are derived from a red alga. The
plastid-targeted RPEs of both green algae and red algae are
cyanobacterial (Figure 1) and in neither group has the
proteobacterial RPE-γ type been found in available com-
plete genome sequences. Accordingly, if the plastid RPEs
in chromalveolates and chlorarachniophytes were derived
from a common ancestor, the proteobacterial type would
have had to coexist with the cyanobacterial type in an
ancestor of red and green algae, with subsequent diversifi-
cation involving a complex pattern of reciprocal losses not
only in rhizarians and chromalveolates, but also in red
and green algae. Alternatively, if the enzyme was a
cytosolic RPE in a hypothetical common ancestor of chlo-
rarachniophytes, haptophytes, and diatoms, then it
would have had to have taken over plastid function twice
independently, in addition to reciprocal losses. Both of
these explanations are very complicated and invoke
higher-order relationships among eukaryotes that are not
known. In addition, the close specific relationship
between the pseudomonad and the eukaryotic RPE-γ
sequences is more suggestive of a recent origin by lateral
transfer than an ancient origin. Taken together, the sim-
plest explanation for the current distribution is that RPE-γ
was transferred from a pseudomonad to an undefined
eukaryotic lineage and then transferred between two
eukaryotic lineages (the direction cannot be inferred from
the phylogeny because the topology of rhizarian and
chromalveolate RPEs is not resolved).

In the course of this study, we also observed an interesting
gene fusion event involving the cytosolic RPE of the dia-
toms T. pseudonana and P. tricornutum and the prasino-
phyte green alga Ostreococcus tauri. In these three
organisms, the cytosolic-type RPE is found as a xyluloki-
nase-RPE fusion-protein. In P. tricornutum and O. tauri the
two proteins are part of an uninterrupted ORF, whereas in
the T. pseudonana genome, the xylulokinase and RPE are
in different reading frames, although this apparent

frameshift is most likely due to the presence of an unan-
notated intron. Xylulokinase catalyses the phosphoryla-
tion of xylulose to xylulose-5-phosphate for entry into the
pentose phosphate pathway. This reaction occurs imme-
diately prior to the ribulose-5-phosphate epimerase reac-
tion, raising the intriguing possibility that the fusion
protein may catalyze both reactions. Interestingly, the N-
termini of the P. tricornutum and T. pseudonana RPE pro-
teins also encode a predicted signal peptide, suggesting
that this fusion protein may be targeted to the plastid. P.
tricornutum and O. tauri also encode canonical cytosolic
RPEs related to other cytosolic isoforms. Gene fusion
events involving carbon metabolic enzymes have been
reported from other algae, notably those involving
GAPDH and enolase in dinoflagellates [36], and between
triose phosphate isomerase and GAPDH in the mitochon-
dria of heterokonts [37]. Whether the fusions had a com-
mon origin or arose independently is not clear: O. tauri is
a green alga whereas diatoms have plastids derived from
red algae. The fusion genes are not demonstrably related
(Figure 1), suggesting perhaps that the fusion arose twice
independently.

Glyceraldehyde-3-Phosphate Dehydrogenase
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
catalyzes the bi-directional conversion of glyceraldehyde-
3-phosphate to 3-phosphoglycerate in both glycolysis and
the Calvin cycle. GAPDH has been extensively sampled
from eukaryotes and bacteria, revealing many cases of lat-
eral transfer and paralogy. Bacteria and plastids canoni-
cally use a class of enzyme known as GapA/B, whereas the
typical eukaryotic cytosolic GAPDH is called GapC. The
ancient evolution of this family is complex as several gene
duplications have taken place and GapC as a whole has
been suggested to be derived by lateral transfer [38,39].
These ancient events remain uncertain, but several eukary-
otic groups also have genes that are clearly from the GapA/
B class: these are not derived from the plastid endosymbi-
ont but are considered to have originated by relatively
recent lateral transfer [15,21,31,40]. One of these cases is
the divergent class of GapA/B (here designated GapA/B*)
previously found only in diplonemids, heterotrophic rel-
atives of kinetoplastids [33]. Once again, however, with
increased sampling we find the same class of GAPDH in
haptophytes (I. galbana) and diatoms (T. pseudonana and
P. tricornutum) (Figure 2). EST data from the haptophyte
E. huxleyi also include three transcripts encoding a similar
GapA/B* gene (GenBank accessions CX777351,
CX776621, and EG034112), but these sequences are too
short to be included in the phylogeny. As noted above,
heterokonts and haptophytes are thought to be members
of the same supergroup, chromalveolates, but they are not
closely related to diplonemids, which are members of the
excavates. Nevertheless, the GapA/B* sequences from all
three groups form a strongly supported clade, which in

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CX777351
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CX776621
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG034112
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turn branches within a eubacterial group consisting of
proteobacteria and cyanobacteria, as found previously for
diplonemids alone [33]. The chromalveolate GapA/B*
sequences are paraphyletic in this analysis, as the diplone-
mids share a robust sister relationship with I. galbana to
the exclusion of diatoms. The I. galbana GAPDH is not full
length, but the N-termini of the two diatom sequences are
of comparable length to GapA/B in bacteria and do not
encode a predicted signal peptide, so these proteins are
likely cytosolic.

The distribution of GapA/B* bears many similarities to
that of RPE-γ : the gene is found in distantly related clades
(chromalveolates and diplonemids), each of which has
relatives that lack it. Also in common with RPE-γ, the close
relationship between the eukaryotic GapA/B* genes and
their bacterial sisters, together with their distant relation-
ship to canonical eukaryotic GapC genes, indicates that
the eukaryotic homologues originated by lateral transfer
from a bacterium. However, this conclusion does not
address present-day distribution of GapA/B* in eukaryo-
tes. If there was a single transfer to the ancestor of chroma-
lveolates and diplonemids, then the gene must have been
lost in many of the relatives of these two groups (consid-
ering only taxa where complete or nearly complete
genomes are known, this includes apicomplexa, Perkinsus,
ciliates, trypanosomatids, and perhaps Giardia and Tri-
chomonas). However, given the large number of lateral
transfer events already known to have involved GAPDH,
including one between two eukaryotes [21], the current
narrow range of taxa possessing the GapA/B* gene sug-
gests instead that it was transferred from a bacterium rela-
tively recently and subsequently spread to other
eukaryotes by eukaryote-to-eukaryote transfers. The
branching order between the eukaryotic GapA/B* genes is
well supported, and at face value this result suggests that
there were either multiple transfers between eukaryotes or
that the gene originated in chromalveolates and was trans-
ferred to diplonemids.

Transketolase
Transketolase (TK; glycoaldehydetransferase) catalyzes
the reversible transfer of a C2 unit between two 5-carbon
sugars, producing a 3-carbon sugar and a 7-carbon sugar,
or between a 4-carbon sugar and a 5-carbon sugar, pro-
ducing a 6-carbon sugar and a 3-carbon sugar. TK func-
tions in the cytosol of non-photosynthetic eukaryotes,
where it is involved in reactions of the classic pentose-
phosphate pathway. It is also found in the plastids of
algae and plants, where it functions in the Calvin cycle as
well as the reversible branch of the pentose-phosphate
pathway. In at least some plants, an additional cytosolic
isoform of TK, related to the plastid form, exists [41].

TK exhibits a complex phylogenetic distribution across
different groups of eukaryotes. Metazoa and ciliates have
a highly divergent form of TK characterized by many gaps
and deletions; we have not included these sequences in
our data set because they are difficult to align with other
TKs. Most eukaryotic cytosolic TKs belong to a more con-
served group that is widespread and constitutes a single
well-supported clade (Figure 3). Similarly, most plastid-
targeted TKs have robust cyanobacterial affinities, as
expected, although one with an unusually close relation-
ship to the cytosolic clade described above. The phylog-
eny within the plastid-targeted clade is generally not well
resolved; however, one interesting exception are the plas-
tid-targeted TKs from the euglenid Euglena gracilis and the
dinoflagellate Heterocapsa triquetra, which form a very
strongly supported branch in all analyses and which fall at
the base of the plastid-targeted clade with strong support
in analyses of the full protein (Figure 3, 'Plastid-targeted').
Euglenids and dinoflagellates are not closely related and
their plastids are derived from green and red algae, respec-
tively. That these two sequences branch together is there-
fore unusual and reminiscent of a proposed transfer of a
plastid-targeted GAPDH between euglenids and dinoflag-
ellates [36].

The most interesting clade, however, comprises several
eukaryotic TKs that are unrelated to either the major
cytosolic clade or plastid-targeted clade, but instead are
closely related to the bacterial group Chlamydiales (Figure
3). This clade (which we term TK-Ch) includes not two,
but several distantly related groups of eukaryotes. The
chromalveolates are most heavily represented, including
the diatoms T. pseudonana and P. tricornutum, the hapto-
phyte I. galbana, and the dinoflagellate with a haptophyte
plastid, Karlodinium micrum. Also included are the amoe-
bozoans Dictyostelium discoideum and Physarum polycepha-
lum, the excavate E. gracilis, and the rhizarian B. natans, an
assemblage that accounts for four of the five eukaryotic
supergroups (the exception being plants). In addition,
more highly truncated ESTs were found from several other
chromalveolates, specifically the haptophyte P. parvum
and the cryptomonad Guillardia theta, as well as ESTs rep-
resenting another copy of the gene from K. micrum. These
sequences were too short to include in the analysis shown
in Figure 3, but in phylogenies restricted to the 3' end of
the gene they consistently branch within this clade with
high support (not shown). Amoebozoans and E. gracilis
consistently form a strongly supported group, as do the
chromalveolates and B. natans. Within the latter clade, I.
galbana occupies a basal position in analyses based on the
nearly complete amino acid sequence, and this result is
strongly supported both by bootstrap values and by the
presence of a unique conserved 4-amino acid insertion in
the K. micrum, B. natans and diatom TK-Ch sequences that
is absent from I. galbana TK-Ch (Figure 4).
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Bayesian phylogenetic tree of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)Figure 2
Bayesian phylogenetic tree of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The tree was inferred from 
278 amino acid characters with branch lengths estimated using PROML. Bootstrap values > 50% are shown. Values shown 
above a node correspond to PHYML bootstrap support, those below a node correspond to WEIGHBOR support. Eukaryotic 
sequences are enclosed in boxes where blue corresponds to the major clade of cytosolic proteins, green corresponds to plas-
tid-targeted proteins, and red corresponds to bacterium-derived genes (the B. natans plastid targeted GAPDH is also bacte-
rium-derived and is coloured red). Filled circles adjacent to taxon names indicate that a complete genome is available for this 
organism.
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Bayesian phylogenetic tree of transketolase (TK)Figure 3
Bayesian phylogenetic tree of transketolase (TK). The tree was inferred from 473 amino acid characters with branch 
lengths estimated using PROML. Bootstrap values > 50% are shown. Values shown above a node correspond to PHYML boot-
strap support, those below a node correspond to WEIGHBOR support. Eukaryotic sequences are enclosed in boxes where 
blue corresponds to the major clade of cytosolic proteins, green corresponds to plastid-targeted proteins, and red corre-
sponds to bacterium-derived genes. Filled circles adjacent to taxon names indicate that a complete genome is available from 
this organism. Multiple isoforms of TK are present in the diatom genomes, both a Chlamydia type TK as well as a eukaryotic 
form of this enzyme are present. Two types of TK are present in Euglena as well, a form related to the plastid TK of other 
eukaryotes as well as a Chlamydia type.
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We cannot determine whether the TK-Ch proteins of B.
natans and K. micrum are cytosolic or plastid-targeted as
they are N-terminally truncated. However, the E. gracilis
and two diatom sequences are comparable in length at
their N-terminus to bacterial TKs and cytosolic TKs of
other eukaryotes, and neither is predicted to encode a sig-
nal peptide. The transketolase of Isochrysis galbana encodes
a long n-terminal leader predicted to encode a signal pep-
tide, suggesting that this transketolase may be plastid-tar-
geted in I. galbana. Altogether, the evidence suggests that
these TK-Ch proteins are plastid-targeted in some organ-
isms such as the haptophyte I. galbana, but cytosolic in
other photosynthetic organisms such as the diatoms P. tri-
cornutum and T. pseudonana and the euglenid E. gracilis.

In addition to this group, there are also a few eukaryotic
sequences that fall outside any of the TK groups character-
ized so far. In particular, the amoebozoan Hartmannella
vermiformis and the dinoflagellate K. micrum both have
EST-predicted TKs related to a proteobacteria-planctomyc-
etes-CFB bacterial clade (a relationship that is further sup-
ported by an insertion: Figure 4), and that constitute a
weakly supported clade (Figure 3). The Entamoeba histolyt-
ica TK, on the other hand, branches outside any eukaryo-
tic clade but does not show an affinity to any other group.

Distinguishing between lateral transfer and paralogy in
the TK case is a more complex problem than in the RPE
and GAPDH situations considered above, because the
diversity of eukaryotes with TK-Ch is much greater. At the
same time, this breadth makes the TK case potentially
much more interesting, and significant. This wide distri-
bution makes a stronger case for paralogy – that this gene
represents an ancient eukaryotic paralogue present in the
last common ancestor of these groups. This argument
implies that the gene was lost in close relatives of extant
organisms that contain TK-Ch, which is a substantial
qualification because a large number of losses would be
required: considering only groups where genome
sequences are complete or nearly so, this would include
animals, fungi, Entamoeba, apicomplexa, ciliates, Perkin-
sus, kineteoplastids, Giardia and Trichomonas. The specific
relationship between the eukaryotic TK-Ch and Chlamy-
diales TK sequences is also difficult to reconcile with such
an ancient origin, suggesting instead that the correspond-
ing gene may have originated more recently by lateral
gene transfer from an ancestor of the Chlamydiales group.

If, in fact, the TK-Ch gene was transferred to an ancient
ancestor of most or all eukaryotes, no eukaryote-to-
eukaryote transfers need be invoked. However, this strict

Transketolase alignment flanking a 4-amino acid insertion present in diatom, dinoflagellate and chlorarachniophyte TK-Ch genesFigure 4
Transketolase alignment flanking a 4-amino acid insertion present in diatom, dinoflagellate and chlorarachnio-
phyte TK-Ch genes. A nearby 11- to 15-amino acid insertion characterizes a mixed group of CFB bacteria and proteobacte-
ria as well as the amoebozoan Hartmannella vermiformis and the dinoflagellate Karlodinium micrum. Eukaryotic TKs putatively 
derived from lateral transfer events are surrounded by black squares (TK-Ch being the lower box).
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interpretation runs into difficulties when the phylogeny
within the TK-Ch clade is considered. If no between-
eukaryote transfer had occurred, then the supergroups
should be monophyletic or at least unresolved. This is not
the case, since the rhizarian B. natans branches within the
chromalveolates with strong support (Figure 3), and its
relationship to K. micrum and the diatoms is further sup-
ported by the shared insertion (Figure 4). To explain these
observations without lateral transfer, it would be neces-
sary to propose additional cases of paralogy arising since
the gene originated in eukaryotes. The alternative explana-
tion is that the B. natans gene is derived from lateral trans-
fer from another eukaryote, which is consistent with the
observation that nearly a dozen other B. natans genes have
been derived from other phototrophs by lateral transfer
[15]. By extension, there is no reason to exclude the pos-
sibility that there have been other transfers between
eukaryotes (the present distribution could be achieved
with as few as three transfers), which would also explain
the punctate distribution without having to argue for loss
in close relatives. This interpretation provides the simplest
explanation of the current data. If eukaryote-to-eukaryote
gene transfer is the underlying mechanism by which TK-
Ch came to exhibit its present distribution, then the
resulting pattern is second in complexity only to that of
the previously described case of a novel elongation factor-
like GTPase, EFL [24].

Conclusion
We describe three examples where the phylogeny of a car-
bon metabolic enzyme at first appeared to indicate a sim-
ple case of bacterium-to-eukaryote lateral gene transfer,
but where greater sampling has shown the situation to be
considerably more complex. In all three cases other
eukaryotes with the same bacterial gene have been discov-
ered, and in each case these eukaryotes are only distantly
related to one another at the organismal level. The first
important point to note here is that these observations
emerged only with an increased sampling of eukaryotic
molecular diversity, implying that the distributions
reported here are likely to change further as taxon sam-
pling becomes even more comprehensive. However, the
distribution can only change in one direction – toward
greater complexity. It is possible that these genes will ulti-
mately be found in such a large sample of eukaryotes we
will ultimately conclude that they represent ancient para-
logues whose distribution is mostly due to gene loss; on
the other hand, considering the high frequency of the
absence of these particular sequences in current data, it
seems more likely they will continue to be rare and to
exhibit a punctate distribution. In the case of the EFL
GTPase further sampling has revealed additional organ-
isms that possess the corresponding gene [42,43]; never-
theless, EFL remains far less common than its counterpart,
EF-1α.

A second noteworthy point is that we often contrast lateral
gene transfer and lineage sorting as two contradictory pos-
sibilities, whereas they work concurrently. If a new gene
arrives in a lineage by lateral transfer, some descendents
may keep it and others may lose it, resulting in an appar-
ently complex distribution. Distinguishing this pattern
from that resulting from serial transfers is difficult and
may well be impossible in certain circumstances; how-
ever, we can still weigh the observations in favour of one
possibility over the other. In particular, lineage sorting is
probably more likely in cases where a complex distribu-
tion of presence and absence is found in closely related
species, whereas serial transfers are more likely when the
time frame is significantly longer. In the three cases
described here, the time frame is very long indeed, and
there is evidence from the internal phylogenies for eukary-
ote-eukaryote transfer. The significance of this finding
extends beyond these three genes, to the process of trans-
fer between eukaryotes in general. Currently, few cases of
such transfers are known because they are difficult to
detect in the absence of better sampling than is currently
available for most genes. The results reported here use an
unusual feature of the gene, its origin from bacteria, as a
flag to draw attention to subsequent transfers; however,
there is nothing to indicate that the same process could
not be occurring in many other genes where it is not as
evident because of the lack of such flags.

Methods
Characterization of new sequences
Using TBestDB [44], clones corresponding to TK were
identified in EST projects from Euglena gracilis (12 ESTs for
the chloroplast-targeted isoform and 3 ESTs for the TH-Ch
isoform), Bigelowiella natans (3 ESTs),Hartmannella vermi-
formis (9 ESTs), Karlodinium micrum (4 ESTs for the TK-Ch
isoform and 1 EST for the CFB group isoform), Isochrysis
galbana (7 ESTs) and Physarum polycephalum (18 ESTs).
Clones corresponding to RPE were identified from Pavlova
lutherii (3 ESTs). ESTs were re-sequenced to obtain full-
length assemblies wherever possible. Putative full-length
transcripts were assembled in this way for TK from E. gra-
cilis, P. polycephalum and H. vermiformis. 5'-Truncated
assemblies were obtained from K. micrum and I. galbana.
The 5' end of B. natans TK was obtained through PCR
amplification using degenerate TK primers (CGCGACTA-
CAGGCCCNYTNGGNCARGG and GCGCAAG-
GCGAACWSNGGNCAYCCNGG) and specific primers
based on the EST sequences (CTCTCCAACACCGATA-
GAATCATGAGTC and GCCTTGTACCGGGTGATGA-
CATCCTCAG). A PCR product from I. galbana with
similarity to bacterial GAPDHs was obtained through
PCR using degenerate primers (CCAAGGTCGGNATH-
AAYGGNTTY and CGAGTAGCCCCAYT CRTTRTCRT-
ACCA). All PCR products were cloned using the TOPO TA
vector (Invitrogen) and multiple copies were sequenced
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on both strands. New sequences were deposited in Gen-
Bank as accessions EF216678-EF216685, EF221881 and
EF375722. RPE genes were also identified in EST projects
from Emiliania huxleyi (7 ESTs) and Prymnesium parvum (1
EST). Homologues of all three genes were also identified
in the completed genomes of Thalassiosira pseudonana [45]
and Phaeodactylum tricornutum [46].

Sequence analyses
For organisms possessing a complex plastid, the probable
plastid localization of all full length sequences was evalu-
ated using SIGNALP v. 3.0 [47] and leader sequences were
manually scanned for characteristics expected of transit
peptides for the group in question.

New sequences were aligned to homologues from public
databases using CLUSTAL X, and manually edited using
MacClade 4.07. Publicly available sequences used in
alignments were downloaded from nr GenBank, ESTdb,
or from complete eukaryotic genome databases. All
sequences found to be closely related to the eukaryotic
genes in question were included, along with a representa-
tive selection of other genes. Genes that were closely
related to some other gene but not the eukaryotic genes in
question were generally excluded, as were some genes that
were highly divergent (e.g. the animal TK). Positions that
were not clearly homologous were excluded, resulting in
a full TK alignment with 473 characters, and a reduced
alignment with 212 characters that was also used to
include those sequences with missing 5' sequence. The
RPE alignment consisted of 183 alignable characters and
the GAPDH alignment comprised 278 alignable charac-
ters. Alignments of all three genes are available upon
request from PJK.

While the possibility that several of these sequences are
artifacts from a bacterial genome exists, several lines of
evidence argue against this. ESTs encoding the proteobac-
terial-like RPE from haptophytes branch together
(weakly) to the exclusion of all bacterial sequences. This
suggests that if these sequences arose through bacterial
contamination, the source of the contamination must
have been similar in each library. Also, multiple ESTs
encoding RPE in P. lutheri and E. huxleyi are present in
these two libraries (two and seven respectively), indicat-
ing that if this RPE is due to a bacterial contaminant, the
contamination must be highly represented in these librar-
ies. Lastly, the RPE sequence of E. huxleyi encodes an N-
terminal extension with a predicted signal peptide, a hall-
mark of plastid-targeted proteins in eukaryotes with com-
plex plastids. Similarly, a contamination artefact cannot
be precluded for the K. micrum and H. vermiformis TKs that
branch within a clade consisting of CFB bacteria, proteo-
bacteria and planctomycetes. Like the RPEs of the hapto-
phytes, we would have to conclude that the

contamination arose from a similar source since the two
sequences branch together with moderate support in our
analysis. The K. micrum TK is encoded by a single EST,
though the H. vermiformis TK is encoded by nine ESTs sug-
gesting that if this H. vermiformis sequence is a contami-
nant, it is highly represented among the H. vermiformis
ESTs.

Phylogenetic analyses were carried out using maximum
likelihood, distance and Bayesian methods. Maximum
likelihood phylogenies were performed using PHYML
2.4.4 [48] with the WAG substitution matrix and site rate
distribution modeled on a discrete gamma distribution
with 4 rate categories and one category of invariable sites.
The estimated alpha parameters were 1.154, 1.156, and
1.419 and the estimated proportions of invariable sites
were 0.067, 0.050, and 0.101 for RPE, GAPDH, and TK,
respectively. Bayesian analysis of trees was performed
using MrBayes 3.0b4 [49] run using the WAG substitution
matrix and a gamma distribution with 4 rate categories
and one category of invariable for 1,000,000 generations
with sampling every 1,000 generations. Distance analyses
were performed using TREE-PUZZLE 5.2 [50] with four
rate categories and 1 category of invariable sites. Alpha
parameters inferred by TREE-PUZZLE were 0.89, 1.04 and
1.21 and the estimated proportions of invariable sites
were 0.04, 0.05 and 0.10 for RPE, GAPDH and TK respec-
tively. WEIGHBOR 1.0.1a was used to reconstruct dis-
tance trees Bootstrapped distance matrices were generated
using PUZZLEBOOT [51] with alpha parameter and pro-
portion of invariable sites estimated using TREE-PUZZLE
5.2.
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