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Abstract

Air pollution inhaled dose is the product of pollutant concentration and minute ventilation

( _VE). Previous studies have parameterized the relationship between _VE and variables such

as heart rate (HR) and have observed substantial inter-subject variability. In this paper, we

evaluate a method to estimate _VE with easy-to-measure variables in an analysis of pooled-

data from eight independent studies. We compiled a large diverse data set that is balanced

with respect to age, sex and fitness level. We used linear mixed models to estimate _VE with

HR, breath frequency (fB), age, sex, height, and forced vital capacity (FVC) as predictors.

FVC was estimated using the Global Lung Function Initiative method. We log-transformed

the dependent and independent variables to produce a model in the form of a power function

and assessed model performance using a ten-fold cross-validation procedure. The best

performing model using HR as the only field-measured parameter was _VE = e-9.59HR2.39

age0.274sex-0.204FVC0.520 with HR in beats per minute, age in years, sex is 1 for males and 2

for females, FVC in liters, and a median(IQR) cross-validated percent error of 0.664(45.4)%.

The best performing model overall was _VE = e-8.57HR1.72fB
0.611age0.298sex-0.206FVC0.614,

where fB is breaths per minute, and a median(IQR) percent error of 1.20(37.9)%. The perfor-

mance of these models is substantially better than any previously-published model when

evaluated using this large pooled-data set. We did not observe an independent effect of

height on _VE, nor an effect of race, though this may have been due to insufficient numbers of

non-white participants. We did observe an effect of FVC such that these models over- or

under-predict _VE in persons whose measured FVC was substantially lower or higher than
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estimated FVC, respectively. Although additional measurements are necessary to confirm

this finding regarding FVC, we recommend using measured FVC when possible.

Introduction

The public health consequences of ambient air pollution have been well-documented by more

than three decades of epidemiologic, observational and clinical studies. The global burden of

disease attributable to ambient air pollution is at a historical high and was estimated to be

greater than 3 million deaths per year in 2010 [1]. Although air quality has improved signifi-

cantly in recent decades in many parts of the developed world, ambient air pollution continues

to present a formidable public health burden and is estimated to lead to over 200,000 prema-

ture deaths per year [2] in the United States. Efforts to better understand the causal relation-

ships between environmental exposures and health effects are hampered by exposure

misclassification, which can obscure the true association between exposure and disease and

bias effect estimates [3–5]. Although much of the exposure misclassification in air pollution

studies is spatial in nature, vast differences in ventilation rate between individuals also contrib-

ute to exposure misclassification.

Given that air pollution inhaled dose is a function of both pollutant concentration and the

inhaled volume of air, it is important to accurately account for minute ventilation ( _VE, the vol-

ume of air inhaled per minute) in order to reduce this misclassification and advance the sci-

ence of air pollution exposure assessment. Although _VE is difficult or intrusive to measure in

natural settings, in this paper, we describe a methodology for estimating _VE using data that is

easily obtainable using wearable devices.

Several previous studies have estimated _VE from measurements of heart rate (HR) [6–9],

breath frequency (fB) [10], power expenditure [11], or metabolic equivalents (METs) [12], and

are succinctly summarized by Dons et al [13]. The typical model structure in these previous

studies includes _VE as the dependent variable and HR or other physiological parameters as the

predictors, often log-transformed. Since there is tremendous inter-subject variability in the

relationship between _VE and HR, these models suffer from poor generalizability and typically

have a wide range of percent error. A small-scale pilot study by the lead author of this paper

collected data from fifteen adolescent athletes [14] and used the novel approach of using _VE

normalized by forced vital capacity ( _VE=FVC) as the dependent variable. This approach effec-

tively models the fraction of lung capacity an individual inhales per minute rather than the

absolute volume of air and has the effect of reducing inter-subject variability in the relationship

between _VE and physical activity. However, major limitations of this pilot study were small

sample size and a non-representative study population. To address these concerns, we sought

to explore a variety of methodologies in a much larger and more diverse data set by pooling

data from several previously published studies.

Methods

Data collection

We performed a Pubmed database search with the terms “heart rate”, “breathing rate” and

“minute ventilation” and narrowed the scope to papers with publication dates in the previous

five years. This search returned 327 results, and upon closer examination, we identified 24

studies in which the abstract or main text indicated that all three parameters were measured in
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healthy humans with time resolution of one minute or less. These studies had a wide variety of

scientific objectives, and only a few were related to air pollution exposure. In addition, we had

previously identified six publications that were focused on estimating air pollution dose but

did not meet our Pubmed database search criteria. We contacted by email the corresponding

authors for all 30 identified papers and invited their participation in this analysis. Twelve

authors responded agreeing to participate (in one case, the principal investigator had retired

and the funding agency agreed on his behalf), two authors responded that the data was

unavailable, and we received no response from the remaining 16 after two attempts. Of the

twelve positive responses, ten investigators submitted data, of which eight data sets were usable

for this analysis. Data from one study was unusable due to misaligned time stamps and another

due to poor quality heart rate data (in neither case was this important for the original purpose

of the respective study). The final eight participating studies produced a data set that includes

14,550 one-minute data points from 471 unique individuals in the age range of 4–80 years.

The data set is balanced with respect to sex, includes individuals of a variety of different fitness

levels from five different countries on three different continents, and is racially and ethnically

diverse (though disproportionately white). In all cases, the data was deidentified, and a sum-

mary of subject characteristics is provided in Table 1. The participating studies are Greenwald

et al. [14], Cozza et al. [8], Ramos et al. [9], Adams et al. [15], Giles et al. [16], Jakovljevic et al.

[17], Villar et al. [18], and Good et al.[19]. All studies were approved by their respective Insti-

tutional Review Boards.

An inherent strength of a pooled-data study is the greater level of generalizability that arises

from analyzing data collected following diverse protocols using a variety of methodologies,

instrumentation, and personnel. The data assembled in this paper include subjects at rest, sit-

ting, standing, walking, running, cycling, and performing routine activities in an ambulatory

setting. A summary of study protocols and data collection methodologies is provided in

Table 2.

Table 1. Subject characterisitcs.

Age in yearsa 33(4–80)

Height [cm]b 163±18

Weight [kg]b 63±21

BMIa 23.2(13.1–43.9)

Number of subjects Number of data points

Race/ethnicityc

Caucasian 373(79) 12306(83)

African-American 20(4.2) 534(3.6)

Hispanic 53(11) 1282(8.7)

Asian 25(5.8) 619(4.2)

Sexb

Male 240(51) 8473(57)

Female 231(49) 6268(43)

Height [cm]b 163±18

Weight [kg]b 63±21

BMIa 23.2(13.1–43.9)

a Values are mean(range)
b Values are mean±SD
c Values are frequency(percentage)

https://doi.org/10.1371/journal.pone.0218673.t001
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Model selection

We devoted considerable effort to exploring a wide variety of modeling approaches in order to

identify the most appropriate and best performing predictive models. Given that the primary

rationale for this study was to develop a practical model for assessing air pollution inhaled

dose in field studies, we focused on modeling methodologies that are easily-implemented in a

variety of applications and predictor variables that may be easily and inexpensively measured

with high time-resolution. We therefore developed a list of potential predictors that included

HR, fB, age, sex, height and weight as well as second order and/or interaction terms for these

predictors. Due to their limited practicality in ambulatory settings, we did not include tidal

volume (VT), metabolic equivalents (METs) or oxygen consumption (VO2) as predictors. In

addition, given that the relationships of HR and _VE as well as fB and _VE are non-linear [20]

and have different response and relaxation times following stimuli [21], we examined the effect

of log-transforming predictor variables and/or the independent variable as well as including

HR and fB lags (value 1, 2, 3, or 4 minutes previously) and factorials (current value multiplied

by the value 1, 2, 3, and up to 4 minutes previously) as predictors.

A source of inter-subject variability in _VE is differences in lung volume, and we therefore

explored four distinct modeling approaches to parameterize the effect of this variability. We

ultimately rejected the first three of these approaches, but we will briefly describe them in

order to justify our model selection. A common measure of functional lung volume is forced

vital capacity (FVC), or the volume of air that can be exhaled with maximum effort, and

another lung function parameter potentially useful for predicting _VE is forced expiratory

Table 2. Summary of study protocols.

lung function _V_
E

HR fB MET motion physical

activity

number of subjects

Greenwald et al. a b f i - k l 15

Cozza et al. a b f - - - m 50

Ramos et al. - c g c - - l 20

Adams et al. - b f b - - l, n 212

Giles et al. a c h c - - m 18

Jakovljevic et al. - d f d j - l 79

Villar et al. - b f b j - l 20

Good et al. - e f e j k l, m, n 57

Abbreviations: _V_
E−minute ventilation, HR–heart rate, fB−breath frequency, MET–metabolic equivalent, motion– 3-dimensional acceleration

- parameter was not measured

a spirometry

b vane respirometer

c pneumotachometer

d pitot tube flow sensor

e flat fan digital volume transducer

f R-R interval derived from electrocardiogram, electrodes worn on torso

g reflectance pulse oximetry, sensor worn on torso

h transmittance pulse oximetry, sensor worn on fingertip or ear

i chest expansion strap

j Metabolic Equivalent (MET), measured with wearable sensor

k accelerometer

l treadmill

m cycle ergometer

n field activities including walking, cycling, and specific tasks

https://doi.org/10.1371/journal.pone.0218673.t002
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volume in 1-second (FEV1). In persons with normal lung function, FEV1 is about 80% of FVC.

In persons with obstructive airway disease such as asthma or COPD, FEV1 can be reduced rel-

ative to FVC, and during intense physical activity, this reduction in the ability to rapidly exhale

may be relevant for the estimation of _VE. FVC and FEV1 in healthy individuals are strongly

correlated with height, and to a lesser extent, with age, sex, and race [22, 23]. Several previous

well-powered studies [22, 23] have parameterized the influence of these variables on lung func-

tion and have developed algorithms for predicting FVC and FEV1. Our exploratory but ulti-

mately rejected modeling approaches are labelled Approaches A-C (see Table A in the

Supporting Information file titled S1 Text): Approach A uses _VE normalized by FVC as the

dependent variable, Approach B uses _VE as the dependent variable and includes determinant

factors of FVC as predictors, and Approach C uses the same as approach B but also includes

FVC as a predictor of _VE. As we describe below, the best-performing modeling approach is

referred to as Approach D and uses log-transformed _VE as the dependent variable and log-

transformed HR, fB, FVC, and subject-specific traits as predictor variables.

For Approaches A, C and D, we used the measured value of FVC or FEV1 in the subset of data

for which it was available, and we also examined the entire dataset using predictions of FVC based

on height, age, sex, and race or ethnicity according to the method of the Global Lung Function

Initiative [23]. This method uses five racial or ethnic categories: Caucasians, African-Americans,

North East Asians, South East Asians, and an Other category for all other ethnicities. We catego-

rized white subjects from the United Kingdom, Portugal, Brazil, Canada, and the United States as

Caucasian. All subjects of African ancestry were American and assigned to the African-American

category. There were 25 American or Brazilian subjects listed as Asian; however, with no addi-

tional information regarding North or South Asian ancestry, we assigned these subjects to the

Other category. In addition, there were 53 American subjects who self-identified as Hispanic, but

again, with no additional knowledge of racial or national ancestry, these subjects were classified as

Other. FVC or FEV1 predictions obtained using this method will not capture changes incurred by

airway disease; however, the subjects enrolled in all studies were stated to be healthy.

Statistical methods

We used general linear mixed models to reduce the inherent bias of within-subject repeated

measures data [24]. All models were performed using the lme4 or nlme packages for R v3.2.2

(R Foundation for Statistical Computing). Presented results are from the lme4 package, while

the nlme package was used to investigate covariance matrix structure. In particular, we exam-

ined the effect on model performance of using the variance components and first order autore-

gressive covariance matrix structures, and the best performing models used the variance

components structure. We created a categorical variable called “study” that corresponds to

each of the contributing studies. We included a random effect for subject and a random slope

for both HR and fB with subject. We additionally evaluated the effect of including a random

effect for “study” to account for systematic differences between each study, although this ran-

dom effect was not found to be important or improve model performance. We visually evalu-

ated residual plots and did not observe evidence of heteroscedasticity. P-values were calculated

for each predictor by using likelihood ratio tests to compare the full model with the predictor

in question to the reduced model without. The level of significance was set a priori at 0.05.

Cross validation

We performed a ten-fold cross validation procedure to assess model performance. Subjects

were randomly divided into ten groups such that each group was comprised of a training set of
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423 or 424 subjects and a validation set of 47 or 48. Parameter estimates were calculated based

on the training sets, predictions were made for the validation sets, and then the predictions

from all ten validation sets were assembled and compared with observations. The cross vali-

dated percent error was calculated as (predictions-observations)/observations�100%. We eval-

uated both model accuracy and precision by examining median percent error (favoring

models with a smaller absolute value) and inter-quartile range (IQR, favoring models with a

smaller spread in the distribution).

Results

Modeling approach

Parameter estimates and results for the best-performing models using approaches described

above as A, B, or C (i.e. the dependent variable was not log-transformed, regardless of whether

predictor variables were log-transformed) are included in S1 Text. Using these approaches, we

observed substantial evidence of interaction between several predictor variables, namely HR

with fB, and both HR and fB with either FVC or the determinants of FVC (i.e. age, height, and

sex). By this we mean that the p-values of these interaction terms were significant, and addition

of these terms improved cross-validation predictive performance. In addition, we observed a

significant effect of adding a second order term for HR (Table A in S1 Text). The interaction

of FVC (or its determinants) with HR or fB was reduced for Approach A, and as a conse-

quence, it generally performed better than Approaches B or C. This can likely be explained by

noting that the difference between Approach A and C is analogous to algebraically rearranging

Eq 1 to produce Eq 2:

_VE=FVC ¼ b0 þ b1HRþ b2fB ð1Þ

_VE ¼ b0 � FVCþ b1HR � FVCþ b2fB � FVC ð2Þ

Eq 3 expresses this as a hierarchically well-formulated model:

_VE ¼ b
0

0
þ b

0

1
HRþ b0

2
fB þ b3FVCþ b4HR � FVCþ b5fB � FVC ð3Þ

In other words, Approach A moves the interaction of FVC (or its determinants) to the left-

hand side of the model. Approach B is similar except that FVC is substituted with a function of

age, height, and sex, leading to an even more complicated arrangement of interaction terms.

The above equations are simplified in that HR, fB, and FVC are the only predictors shown, but

the best performing models using these approaches also included a second order term for HR,

interaction of HR with fB, age, height, and sex. An additional drawback to these approaches is

related to the fact that the pooled dataset for this analysis includes a large number of data

points from subjects at rest (approximately 10%). Approaches A, B, and C performed poorly

for subjects at rest and occasionally produced negative predictions of _VE for subjects with HR

of less than about 60 beats per minute. The minimum observed _VE for a subject at rest was

0.78�FVC, and we therefore substituted 0.78�FVC for any predicted ventilation value less than

that for models using Approaches A, B, or C.

The difference between Approaches B and C could be characterized as a statistical power

issue. By including predictors of FVC (height, age, sex, race), but not predicted FVC, Approach

B essentially attempts to duplicate the FVC predictions of the GLI study, only with a smaller

sample size and less statistical power. Approach C on the other hand leverages the larger sam-

ple size of the GLI study to produce better predictions of _VE than Approach B.

Predicting minute ventilation from heart rate and breathing rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0218673 July 9, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0218673


After observing the increasing model complexity and poor performance at rest, we evalu-

ated Approach D, which uses a log-transformed dependent variable as well as log-transformed

predictor variables. There are several notable advantages to using a model of this form: it elimi-

nates the need for higher order terms for any predictor variable, it cannot produce a nonsensi-

cal negative prediction, and interaction terms between predictors are implicit. Eq 4 illustrates a

simple model using only HR and fB as predictors with the log-transformed interaction term

between them explicitly included:

lnð _VEÞ ¼ b0 þ b1lnðHRÞ þ b2lnðfBÞ þ b3lnðHR � fBÞ ð4Þ

This can be rearranged to give:

lnð _VEÞ ¼ b0 þ lnðHRb1Þ þ lnðfB
b2Þ þ lnðHRb3 � fB

b3Þ ð5Þ

_VE ¼ exp½b0 þ lnðHRb1Þ þ lnðfB
b2Þ þ lnðHRb3 � fB

b3Þ� ð6Þ

_VE ¼ eb0HRb1 fB
b2HRb3 fB

b3 ð7Þ

Eq 8 shows the same model without an explicit interaction term:

lnð _VEÞ ¼ b0 þ b
0

1
lnðHRÞ þ b0

2
lnðfBÞ ð8Þ

This can be rearranged to give:

_VE ¼ eb0HRb0
1 fB

b0
2 ð9Þ

Evaluation of the above models with and without an explicit interaction term shows that

indeed b
0

1
¼ b1 þ b3 and b

0

2
¼ b2 þ b3 such that Eqs 7 and 9 are equivalent. This obviates the

need for explicitly including interaction terms or higher order terms such as HR2. Although

the best-performing model using Approach A is similar in cross-validated performance (when

corrected for values less than 0.78�FVC) to the best model using Approach D, the Approach D

models are much simpler and easier to evaluate, and therefore, all presented results are from

Approach D.

Best-performing models

Given that HR is easier to measure in field studies than fB and consumer- or medical-grade

wearable devices for measuring HR have greatly proliferated in recent years, we separately

evaluated models using HR as the only continuously-measured variable. The best-performing

of these is labeled Model D1 in Table 3, and the cross-validation results are shown in Fig 1.

Models including fB as a predictor have noticeably improved predictive performance (in that

the IQR of the cross-validation error is reduced). The best-performing of these is labeled

Model D2 in Table 3, and the cross-validation results are shown in Fig 2. Due to the fact that

one of the contributing studies did not measure fB, there were 471 subjects and 14550 data

points available for estimating Model D1, but only 421 subjects and 13767 data points available

for Model D2.

Discussion

Effect of FVC

Only three of the eight contributors performed baseline lung function measurements [8, 14,

16, 25]. These included 83 unique subjects and 4,226 one-minute data points, and these
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subjects were disproportionately high-performing athletes. As a consequence, our models

using measured baseline FVC as a predictor have substantially less statistical power than mod-

els using estimated FVC. On the other hand, given that both airway disease and genetic diver-

sity can result in large differences between an individual’s predicted and actual FVC, FVC

measurements have the advantage of capturing the effect of these differences on _VE. The cross-

validation results shown in Figs 1 and 2 use predicted FVC as a predictor variable, but data

points are shape- and color-coded based on measured FVC. These results suggest that how

well an individual’s predicted lung function agrees with measured lung function has an impor-

tant influence on predictions of _VE. Table 4 describes the results of Model D2 stratified by

lung function status. _VE is substantially overestimated for persons with lower than normal

lung capacity and underestimated for persons with higher than normal FVC. _VE is somewhat

underestimated for persons with measured FVC close to the predicted volume, though to a

lesser extent than persons with high FVC. Persons with unmeasured FVC are somewhat over-

estimated. These results are similar in other models including FVC as a predictor, but are exag-

gerated in models that do not include FVC. Given that _VE is increased during physical activity

by increasing tidal volume as well as fB, and that tidal volume is related to FVC, the observation

that _VE is overestimated for persons with low FVC is consistent with these persons having

lower than normal tidal volume as well. Since tidal volume cannot be easily measured in

ambulatory settings, our findings support the use of FVC measurements as an appropriate

proxy to adjust for the effect of lung volume. Table 5 describes similar results as Table 4 except

measured FVC is used to predict _VE. Note that these results are still from Model D2 wherein

parameter estimates are calculated based on predicted FVC. _VE predictions using measured

FVC are substantially more accurate for persons with measured FVC differing from the pre-

dicted volume in either direction, and the distribution of error is more symmetrical. We there-

fore recommend that predictions of _VE using Models D1 or D2 be made using measurements

of FVC if possible, particularly for persons with non-normal lung function.

Table 3. Results of general linear mixed models using log-transformed _VE as the dependent variable, and

all predictor variables are likewise log-transformed. These models yield a power function of the form _VE ¼

eb0HRb1 fB
b2ageb3 sexb4FVCb5 where β0 is the model intercept.

Model D1 Model D2

Intercepta -9.59(-9.85,-9.32) -8.57(-8.81,-8.33)

p < 10−6 p < 10−6

HR [min-1]a 2.39(2.34,2.44) 1.72(1.66,1.78)

p < 10−6 p < 10−6

fB [min-1]a - 0.611(0.560,0.661)

p < 10−6

age [years]a 0.274(0.230,0.318) 0.298(0.262,0.335)

p < 10−6 p < 10−6

sex [1 for males and 2 for females]a -0.204(-0.287,-0.121) -0.206(-0.277,-0.136)

p < 10−6 p < 10−6

FVC [L]a 0.520(0.436,0.605) 0.614(0.546,0.681)

p < 10−6 p < 10−6

percent errorb -0.664(45.4) 1.20(37.9)

a The first row is the estimate(95% confidence intervals), and the second row is the p-value.
b Percent error is the difference between predictions and observations from cross validation, and values are median

(IQR).

https://doi.org/10.1371/journal.pone.0218673.t003
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Effect of FEV1

In obstructive airway disease such as asthma, bronchial constrictions can reduce expiratory flow

during rapid exhalation without altering vital capacity [26]. The resulting reduced FEV1/FVC

ratio is a classic trait of obstructive airway disease, and it is plausible that in such cases, the baseline

FEV1 value would have a stronger influence on _VE than FVC. We therefore explored the influence

of baseline FEV1 measurements on _VE predictions, but did not observe any improvement in

model performance. It should be noted that since predictions of FEV1 assume no airway disease,

there is no meaningful difference between models developed using predicted FVC and predicted

FEV1 (though the parameter estimates for each are of course different). The performance of mod-

els using measured FEV1 as a predictor was essentially no different than models using measured

FVC. However, this finding may be due to the fact that all subjects with lung function measure-

ments had a FEV1/FVC ratio close to normal (median = 0.81), and we cannot draw a conclusion

on the relative merits of baseline FVC versus FEV1 for purposes of estimating _VE.

Effect of age

For models including age as a predictor, but not height, sex, or FVC, the parameter estimate

(standard error) for age is 0.45(0.023) when fB is included and 0.43(0.024) when it is not. This

Fig 1. Cross validation results for Model D1: _V_
E = e-9.59HR2.39age0.274sex-0.204FVC0.520, where HR is beats per

minute, age is in years, FVC is the GLI predicted value expressed in liters, and sex is 1 for males and 2 for females.

The median(IQR) percent error from cross-validation for this model is -0.664(45.4)%. Circles are persons without an

FVC measurement; triangles are persons with measured FVC = 85–115% of the predicted value; diamonds are persons

with measured FVC< 85% predicted, and squares are persons with measured FVC> 115% predicted. Dashed lines

are ±25% error.

https://doi.org/10.1371/journal.pone.0218673.g001
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implies that all else being equal, _VE would increase with age. However, previous studies have

suggested that in adulthood, resting _VE is not sensitive to age independent of other factors

[27]. In order to explore this discrepancy, we divided the dataset into two strata by age,

Fig 2. Cross validation results for Model D2: _V_
E = e-8.57HR1.72fB0.611age0.298sex-0.206FVC0.614, where HR is beats

per minute, fB is breaths per minute, age is in years, FVC is the GLI predicted value expressed in liters, and sex is 1

for males and 2 for females. The median(IQR) percent error from cross validation for this model is 1.20(37.9)%.

Circles are persons without an FVC measurement; triangles are persons with measured FVC = 85–115% of the

predicted value; diamonds are persons with measured FVC< 85% predicted, and squares are persons with measured

FVC> 115% predicted. Dashed lines are ±25% error.

https://doi.org/10.1371/journal.pone.0218673.g002

Table 4. Effect of lung capacity on predictions of _VE using calculated FVC as a predictor according to Model D2. Model performance is shown for subjects with and

without FVC measurements, and subjects with FVC measurements are further stratified into low, high, and normal FVC groups.

percent error

median(IQR)a
over (under)b 25% over (25% under)c Nd

all subjects 1.20(37.9) 52(48) 23(14) 13767

subjects with no FVC measurement 2.40(39.7) 53(47) 24(14) 10311

subjects with measured FVC 85–115% predicted -4.00(32.1) 42(58) 18(16) 2288

subjects with measured FVC < 85% predicted 15.4(26.9) 78(22) 32(2) 596

subjects with measured FVC > 115% predicted -9.42(24.1) 31(69) 9(20) 572

a The median(IQR) percent error comparing predictions to observations.
b The percentage of predictions that are over- or under-estimated compared to observations.
c The percentage of predictions that are over- or under-estimated by at least 25% compared to observations.
d The number of data points (not the number of subjects).

https://doi.org/10.1371/journal.pone.0218673.t004
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successively using the ages 15–30 years as the cutpoint. In each case, the younger strata had a

larger parameter estimate for age, and we found a negligible effect of age on _VE in strata con-

sisting of persons over 24 years. Other factors that influence _VE during activity are known to

be affected by age, including VO2 max, maximum voluntary ventilation, response to hypoxia,

and FVC. [27] These factors lead to age-related differences in HR and fB for the same level of

activity, and as a consequence, models including HR, fB, FVC as well as age are equally predic-

tive of _VE in the adult population as in the child or adolescent population. We did not observe

an improvement in predictive performance by stratifying the model by age (regardless of the

cutpoint), perhaps due to the reduction in statistical power resulting from stratification.

Effect of height

Previous studies have found that HR is higher [28] and FVC is lower [22, 23] in persons of

shorter stature. If HR and FVC are included as predictors of _VE, the addition of height does

not improve predictive performance and the parameter estimate is non-significant, suggesting

that much of the effect of height on _VE is a result of the height-related changes to HR and

FVC. If FVC is not included as a predictor however, the effect of height is pronounced and sta-

tistically significant. When comparing models including FVC but not height to models includ-

ing height but not FVC, the predictive performance of the FVC models is better, particularly

when using measured rather than estimated FVC. Taken together, these findings suggest that

height does not have a large effect on _VE independent of its effect on lung capacity.

Effect of sex

We evaluated the effect of sex in three different ways: including sex as a predictor, stratifying by

sex, and cross-validating by sex (i.e. using males as the training set and females as the validation

set, then vice versa). All three methods suggested a small but significant effect of sex on predic-

tions of _VE. Using sex as a predictor produced a statistically-significant parameter estimate for

sex which implied that all else being equal (including FVC), _VE is 13% lower in females than in

males. When stratifying by sex, the parameter estimates for HR and age were similar across

strata while those for fB and FVC were markedly different. In addition, cross-validation by sex

was substantially worse than the random 10-fold cross validation. Taken together, these results

suggest an effect of sex on _VE that is independent of FVC. Including sex as a predictor resulted

in better-performing models than stratifying by sex, perhaps due to the reduction in statistical

power resulting from stratification.

Table 5. Effect of lung capacity on predictions of _VE using measured FVC to calculate _VE according to Model D2. Model performance is shown for subjects with

FVC measurements stratified into low, high, and normal FVC groups.

percent error

median(IQR)a
over (under)b 25% over (25% under)c Nd

subjects with measured FVC 85–115% predicted -4.63(29.6) 41(59) 15(14) 2288

subjects with measured FVC < 85% predicted 0.422(22.7) 52(48) 6(6) 596

subjects with measured FVC > 115% predicted 2.57(27.1) 58(42) 15(10) 572

a The median(IQR) percent error comparing predictions to observations.
b The percentage of predictions that are over- or under-estimated compared to observations.
c The percentage of predictions that are over- or under-estimated by at least 25% compared to observations.
d The number of data points (not the number of subjects).

https://doi.org/10.1371/journal.pone.0218673.t005
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Effect of race or ethnicity

Previous studies that have examined lung function in diverse populations have observed impor-

tant differences associated with race or national origin. [22, 23] This diversity is likely the result

of both differences in developmental environment and genetic factors [29, 30] such as adapta-

tion to high altitude [31, 32]. We attempted to evaluate the effect of race or ethnicity in a similar

fashion as the effect of sex. However, the compiled dataset was disproportionately composed of

white subjects, and there were insufficient numbers of all other race or ethnicity categories to

meaningfully evaluate each on its own. We instead used white and non-white race categories

where non-white consisted of the African-American, Asian, and Hispanic categories. We

acknowledge that this is not an ideal approach for assessing the role of human genetic diversity

on _VE. In particular, we note that there is likely a great deal of diversity within each race cate-

gory, that each of the non-white categories are likely to be quite different from each other and

that the Hispanic category does not necessarily identify genetic background and could include

persons with various contributions of European, African, and Native American genetics. Strati-

fying Models D1 and D2 by race resulted in parameter estimates that were somewhat different

from each other; but when cross-validating by race, the percent error was unchanged from ran-

dom 10-fold cross-validation. It is conceivable that there is no effect of race independent of an

effect of race on FVC; however, it is also conceivable that there is an effect of race but that this

pooled data set was not sufficiently powered in non-white racial categories to detect that effect.

Effect of lagged HR

HR and fB have different response and relaxation times following stimuli [21], and the rela-

tionship between HR and _VE may be different when HR is increasing during activity than

when it is decreasing. To parameterize this phenomenon, we evaluated models including

either lagged or factorial terms for HR and fB as predictors. Note that these terms are unavail-

able for the first several minutes of each participant’s session (for however many minutes are

lagged or included in the factorial term), and this results in some loss of statistical power. Fac-

torial terms performed better than lagged terms in all cases. The parameter estimates for HR

factorials were significant (p< 1E10-6), but fB factorials were not. Nonetheless, inclusion of

these terms as predictors did not improve model performance, and we did not include them in

our recommended models. It is possible that the direction of the HR trend (increasing or

decreasing) is unimportant for predicting _VE; however, this data set was primarily assembled

from exercise tests of increasing intensity such that the vast majority of data points are from an

increasing HR trend. It is therefore also conceivable that including factorial terms to identify

the HR trend may be useful in predicting _VE in the post-maximum exertion time period, but

that effect is not detectable with this dataset.

Effect of “study”

We evaluated the possible systematic effects of which participating study collected data in two

ways: we included a random effect for “study”, and we cross-validated by study (i.e., we in turn

used data from each study as a validation set and data from the other seven studies as the train-

ing set). The random effect for study was very small in comparison to the random effect for

subject, and the cross-validation results by study were not meaningfully different than the ran-

dom 10-fold cross-validation. These results are shown in Table B and Figure D of S1 Text.

Taken together, this suggests that were not large systematic differences in relationships

between variables in data collected from the various contributing studies, and we therefore did

not include a random effect for “study” in the final analysis.
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Comparison with previous studies

Several different models for predicting _VE have been previously proposed. The underlying

methodologies for these models are diverse and include static estimates of _VE based on the type

of activity, models based on energy expenditure, metabolic equivalents, oxygen consumption,

HR, fB, or a combination of HR and fB. Most of these previously published models have not

been cross-validated in a large sample. Dons et al. [13] recently compared the calculated _VE and

air pollution dose using 16 different models on subjects using wearable sensors and is a co-

author on this paper. This study found a very wide range of predicted _VE. For some activities,

the predictions differed by a factor of 2–4 using the same data as input. The application of previ-

ously-published models to our assembled dataset is shown in Table 6 along with the results of

Models D1 and D2 from this paper. In addition to the random 10-fold cross-validation results,

we have also included the results of cross-validation by study in this table as this may be a more

fitting comparison for models from other studies. Please note that Table 6 only displays models

that can be evaluated using data included in our dataset. Both Models D1 and D2 presented

here have a substantially lower percent error than any previously published model. The best per-

forming model evaluated by Dons et al. was that of Zuurbier et al. [6] When evaluated using

our pooled data set, the performance of this model is substantially worse than either Model D1

or Model D2 with a median(IQR) percent error of 4.20(68.3)% as compared to -0.664(45.4)%

and 1.20(37.9)% for Models D1 and D2 respectively.

Limitations

Parameter estimates for all models in this study were calculated using predicted rather than

measured FVC. By definition, these predictions are accurate for persons with average lung

function, but this obscures the fact that there is a wide range of diversity in lung function val-

ues even for healthy individuals. The standard deviation for FVC predictions from the GLI

study is approximately ±10% of the predicted value, and the lower limit of normal is approxi-

mately 20% lower than the predicted value. In addition, many persons do not have normal

lung function, including people who are susceptible to the health effects of air pollution

Table 6. The results of applying previously-published _VE predictive models to this assembled dataset. For refer-

ence, the results of Models D1 and D2 from this paper are shown, including both random 10-fold cross-validation and

cross-validation by study.

Model percent error

median(IQR)

Model parameters

Zuurbier et al. [6] 4.20(68.3) males: _VE ¼ e1:03þ0:021HR

females: _VE ¼ e0:57þ0:023HR

Ramos et al. [9] 12.0(67.2) males: _VE ¼ e1:17þ0:02HR

females: _VE ¼ e0:99þ0:02HR

Cozza et al. [8] 16.2(69.7) _VE ¼ e0:58þ0:025HR

Do Vale et al. [33] -30.0(40.9) _VE ¼ 0:00071HR2:17

McArdle et al. [34] 63.0(123) _VE ¼ fBð1:8028 � lnðfBÞ � 3:8881Þ

Greenwald et al. [14] 24.9(65.5) _VE ¼ � 4:247þ 0:0595HRþ 0:226fB
model 1 (10-fold cross-validation) -0.664(45.4) see Table 3

model 1 (cross-validation by study) -2.04(46.3) see Table 3

model 2 (10-fold cross-validation) 1.20(37.9) see Table 3

model 2 (cross-validation by study) 1.07(39.5) see Table 3

https://doi.org/10.1371/journal.pone.0218673.t006
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exposure. This includes asthmatics [35–37] and persons with chronic obstructive pulmonary

disease [38]. Asthmatics frequently have lower lung function than non-asthmatics depending

on phenotype and age of onset [39]. Furthermore, air pollution exposure itself is associated

with decreased lung function [35, 40–43]. Given the large number of nominally healthy sub-

jects included in this data set, it is plausible that there were approximately equal numbers of

participants with FVC above and below the predicted value and that the parameter estimates

are not biased. 82 of the 471 subjects included in the data set had an FVC measurement, and of

these, fourteen had measured FVC more than 15% lower than the predicted value, and eight

were more than 15% higher. As previously discussed, this small difference in lung function

had an observable effect on _VE predictions, and this error was ameliorated by estimating _VE

using the measured value of FVC instead. It is additionally possible that if the data set had

included large numbers of participants with asthma or other airway disease or who otherwise

had measured lung function substantially different than predicted, the calculated parameter

estimates for Models D1 and D2 would be meaningfully different than reported here, and it is

further possible that measured FEV1 would be a better predictor of _VE than measured FVC.

Another limitation of this paper was that all changes in _VE were driven by physical activity.

It has been previously established that noise and anxiety affect _VE [44–47], and it is plausible

that changes in _VE driven by noise or anxiety will have a different relationship with HR and fB

than those driven by physical activity. In the context of air pollution exposure, this would be

relevant for persons in a loud or stressful transportation environment with elevated air pollut-

ant concentrations. Additional research is necessary to determine if this is true, and if so, to

what extent, and what parameters might be useful for accurately estimating _VE in persons

experiencing noise, stress, or anxiety.

Conclusion

We describe a method for estimating _VE in healthy individuals using HR as the continuously-

measured predictor. Model accuracy and precision is improved by including continuously-

measured fB data as well. These predictions have been validated in a large diverse dataset com-

prised of 471 unique persons aged 4–80 years collected as part of eight independent studies. We

found FVC to be an important factor in predicting _VE; predicted FVC calculated according to a

large well-powered study such as the GLI is a substantial improvement over not accounting for

FVC; however, using measurements of FVC to estimate _VE further improved predictions, espe-

cially in persons with lung function higher or lower than normal. We additionally found age

and sex to be important predictors; however, we did not find height or race to be important pre-

dictors independent of their influence on FVC. These models have been validated in individuals

whose _VE is modulated in response to physical activity, and model results may not be accurate

for predicting _VE that is modulated by stress, noise or anxiety. This method is more accurate

and precise than other predictive models for estimating _VE and has the advantage of relying on

predictors that are easily-measured in the field without specialized equipment.
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